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THE STATE-OF-THE-ART PARABOLIC EQUATION APPROXIMATION
AS APPLIED TO UNDERWATER ACOUSTIC PROPAGATION WITH
DISCUSSIONS ON INTENSIVE COMPUTATIONS
The Parabolic Equation (PE) approximation was first introduced by
Tappert 1.2,3 over a decade ago. Tappert's three papers, which are
outlined in vugraph 1, are often referenced.

Computer Simulation of Long-Range Ocean Acoustic
Propagation Using the Parabolic Equation Method

F. D. Tappert and R. H. Hardin

Eighth International Congress on Acoustics,
p. 452, London (1974)

The Parabolic Equation Approximation Method in
- Wave Propagation & Underwater Acoustics

F. D. Tappert
ed. J. B. Keller and J. S. Papadakis

Lecture Notes in Physics, Springer-Verlag (1977)

Applications of the Split-Step Fourier Method to the Numerical
Solution of Nonlinear and Variabie Coeftticient Wave Equation

R. H. Hard{n and F. D. Tappert
SIAM Review 15, p.243 (1973)

YUGRAPH 1

In recent years, many improvements were made on the PE technique with
respect to approximation, implementation, and ap;;Hcation. Let us begin this
discussion by a brief review of how the parabolic wave equation was derived
by Tappert.

Consider the two-dimensional Helmholtz equation in cylindrical

coordinates, that is,
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where ¢(r,2) is the wave field, ko is the reference wavenumber, n(r,z)
is the index of refraction, r indicates the range direction, and z indicates
the depth direction.
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The PE approximation begins with the expression

é(r,2) = u(r,2) v(r), (2)

where v(r) is strongly dependent on the range variable r while u(r,z) is
weakly dependent on r.

¥ 120 20 . .
30 + r%T+ a?+'k°n2(r.z)0 =0

o(r.2) = ur.2) vn

1
[v" + vr] U+ [u" +(} + %— vr) Up + Uzz + k2n2(r,z)] v=20

1 2
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A A

Substituting €q. (2) into Eq. (1) gives
. 1 1,2 2 2
[vrr *2 vr]u + [u" + (F s vr) Up *uy, tkoon (r,z)} va0. (3)

Set the first term of Eq. (3) in brackets equal to -kﬁv and the second
term in brackets equal to kgu. we obtain two equations:

+

I

2
rr e * kov =0 (4)
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‘ Considering only the outgoing wave in the range direction, we see that e o
A - R Sy
f;' the solution of Eq. (4) 1s the zeroth order Hankel function of the first -Z-::f-:
K S ,
: kind, H 1k r). %
: . e ] als
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. Applying the farfield approximation, kor»l, to the argument of R
s W1 (k ), we fing that oSN
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Using Eq. (6) to simplify the coefficient (1/r + (2/v) vr), in Eq. 5., ';' '
we find .
2N NN
X NN
N 2¢.2 i '~:"'.'.\
E U, * (Ziko) U tu,, * ko(n (r,2) - 1) u=0. (1) \":\‘._".
."V\‘
:.. Oropping u rr’ based on the paraxial approximation, .j\j;\'
o .".
;: |u"|<<|21k°ur|. we find N
- . .-‘.-~!\
."\"s‘
i 2 i Wl
& U =¥ ko(n (r,z) - l) u-* zc Uy, - -
* - (8) r\.-\‘.-
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This is the first parabolic wave equation derived by Tappert and is DL
-~ -'\.'
a referred to as the STANDARD PE. D
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If we neglect the scattering effects, €q. (7) can be expressed in an
operator form
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Note that Eqs. (7) and (9) are the same if and only if there is no
scattering.

s EEI"e"w eTs " s"e s N 4 < 2. "

-

Again, considering only the one-way outgoing wave, we deal with the
solution

& e

R P

2

g;wko-iko/w(n?-l)*r}l? v=0. |
a2
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(10) B
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Making use of the slowly varying property of n(r,z) upon r, for the time “\ﬁc.
being, we approximate the square-root operator by ,: "ol
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;2.32 z :232 )

] ] (1)

We refer to this as the small angle approximation. Substituting E€q. (11)
into Eq. (10), we obtain the standard PE, that is,

1 2 i
ut_"?ko(" (r,2) - 1) “*?R:uzz'

The derivation is left for the audience. It is important to note that at
this point the standard PE, based on the PE approximation, obeys the
following limitations:

LIMITATIONS

1. Farfield Approximation, kor » 1.
2. n(r,2) Slowly Varying in 7.

3. One-Way Outgoing Wave.

4. No Scattering.

5. A Particular Square-Root Approximation.

VUGRAPH 4

Within these 1imitations, the standard PE is a very good mathematical model

for long range, low frequency propagation. At this stage, the only effective
solution algorithm for the standard PE was the split-step Fourier algorithm

by Tappert and !llar'ct‘m.3

Before I mention some eariier important developments, I want to
mention the "Workshop on Wave Propagation and Underwater Acoustics,“ held in
Mystic, Connecticut, in November 1974. This workshop was not limited to PE,
but, after attending this workshop, a comprehensive article on PE was
written by Frederick D. Tappert ("The Parabolic Approximation Hethod.'z).
which §s a chapter of the book cited in vugraph 5.

AN
o

v

AT
UG
- =

‘v.'.'v 0
LYY

LA
A

. "‘“‘l s
‘.l- L

LD AT A
. :

."‘
Wt s

o 8

.
’
o'

v
.

s
S
i

‘.

ALY
H Y8
’

S
PN

AR AN ¢

.
&

»
[}
s

¥a .c‘ "- N ’n.

|
l

o
PN

..
Vs
[ B
.

>
e
&

f 0w
L
v
[

s

-~
L]

LY
';‘-'" Y
L

[ 4
[}

l' }"

f
AT

AT
ALY

A A

INAANNAS
.l

i
"._"..- u t"

LA
"

“y G4,

P
’f s
[ A4

e

e
LA

5

f~f.~f r
s Y

A !
[ A AL %"
» e

)
o o

A ‘T

A

l(ﬁ;:.ﬂ"'h'l
TAY STy
(Ilt'f-'l‘-_-

(]
7

*eta] N?,T
.
’,

‘o
PN AN
l."‘.“._

[ )
£ ¢
Y-y

N
;A

e 8
/"ffl
)

o




e o e m——— —— = = =

18 AP sy e e 3

NNV ANG SN RN NAYF ol o BB W e LT L e o

i Tir T T L

W e T8 AS & BT

[
r
”»
-
o
.l
v
4
‘
i
N
«
N
.-

TD 7247

The Parabolic Equation Approximation in

wave Propagation & Underwater Acoustics
F. D. Tappert

ed. J. B. Keller and J. S. Papadakis

Lecture Notes in Physics, Springer-Verlag (1977)

VUGRAPH 5

To this date, the Tappert article is still the most comprehensive article on
PE.

In 1977, there was another workshop4 in Woods Hole, Massachusetts,
where Tappert gave another paper on the application of his split-step
algorithm. Not many people are familiar with this paper.

-

Selected Applications of the Parabolic Equation Method
in Underwater Acoustics

F. D. Tappert

international Workshop on Low-Frequency Propagation
& Noise, Vol. 2, Woods Hole, Mass. pp. 155-194,(1974).

VUGRAPH 6

Since 1974, the interest in the PE was on the rise, but 1ittle was
done. However, there were a number of notable contributions.

The first practical results of applying the PE were published by C. W.
Spofford.5 Then a few papers 6-12 were published in relation to the
normal mode method and its application. These are
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A Synopsis of the AESD Workshop on Acoustic-Propagation :::-;::-::
Modeling by Non-Ray-Tracing Techniques, C. W. Spoffard, \\}\ )
AESOTN-7305(Q73) _ _ _ _ _ _ VALY
Eikonal Approximation and the Parabolic Equation, D. R. oo
Paimer, J. Acoust. Soc. Am,, 60(2), 343354 (1976) _ _ _ _ _ X
Relation Between the Solutions of the Heimhoitz and j::-:-:'-_
Parabolic Equation for Sound Propagation, J. A. DeSanto, J. .'-:,'-j'-
Acoust. Soc. Am., 62(2), 205207 (1977) - _ CION
A Correction to the Paraboiic Equation, J. A. DeSanto, J. S. N
Perking, and R. B. Baer, J. Acoust. Soc. Am., 64(6), 1664-1666 ) L
pe? _ _ et
On the Parabolic Approximation to the Reduced Wave " j’
Equation, G. A. Kriegsmann & E. W. Larsen, SIAM J. Appl. Ta e
Math., 34(1), 201:204 (1978) _ ______ _ _ ——
y AL
Helmhoitz Equation as an Initial Value Problem with ) e
Approximation to Acoustic Propagation, R. M. Fitzgerald, \ -~
J. Acoust. Soc. Am. §7(4), 839-842, (1975) Sty
————————— ——— —— — I D SO Gy W — — —— \ \'D
Propagation of Normal Mode in the Parabolic _';-\.::\":'.
Approximation, S. T. McDaniel, J. Acoust. Soc. Am., 57(2), A
0730 (1978)___ e S
Parabolic Approximation for Underwater Sound Propagation, }'.":r. ul
S. T. McDaniel, J. Acoust. Soc. Am., 58(8), 1178-1185 (1975) S~
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Researchers are curious and interested in the relationship between the
PE and the Helmholtz equation. Fﬂtzger'a.ntflo analyzed the PE in terms of
normal mode theory. Dave Palmer 6 observed that the normal mode formulism
was difficult in ordering the geometric optics path-length parameter because
of mode-coupling. The PE removes this difficulty.

Then, during approximately the same time period, a few interesting
developments happened, one was the computer code.
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The Use of the Parabolic Equation Method in Sound
Propagation Modeling,

F. B. Jensen and H. Krol

SACLANTCEN MEMO SM-72 (1975)

S o — —— —— ——— — — ——— —— — — — —— — —— ——— S— — ——

The AESD Parabolic Equation Model, .

H. K. Brock

NORDA TN-12 (1978)

VUGRAPH 8

> 13

~ Jensen ~ had a PE package called PAREQ in his laboratory performing

3 a variety of research and applications; so too did Brock.“ These computer

.‘ models used the spiit-step algorithm to solve the standard PE. G.

:-" gartrell'® wrote a split-step code on the IBM 370/168. .

However, in solving the standard PE, a number of users found a phase
error. DeSanto, Perkins, and Baer‘a discussed this phase error and
introduced a correction to the parabolic approximation. Notable was a '
technique introduced by Brock, Buchal, and Spofford16 to modify the

sound-speed profile to improve the accuracy of the PE.

Modifying the Sound-Speed Profile to Improve the Accuracy of
the Parabolic Equation Technique

H. K. Brock, R. N. Buchal, and C. W. Spofford

J. Acoust. Soc. Am., 62(3), pp. 543-552 (1977)

VUGRAPH 9

Interest was also increasing in the application of the PE to solve
real problems. The PE models in various laboratories were all based on the DAY
use of the split-step Fourier algorithm with an artificial bottom treatment. ¥

..
et
sy

T
R - ¥4

.’
LN

In order to apply the PE to solve real problems, the model would be
required to have many capabilities. The natural question is what can PE do?
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Can PE offer these capabilities. These questions stirred up research and
development interest. I ask the question in a different way -- what can we

do to improve the PE capability?

ij’?: to improve the PE capability, Lee, Papadakis, and
Prieser''*'Y initiated the numerical solution of the parabolic wave
equation so that under shallow water or strong bottom interaction
environments the numerical technique can handle the bottom boundary'

condition.

Lee and Papadakis introduced the approach of using an ordinary
differential equation (ODE) to determine a special kind of bottom boundary

Numerical Solution of the Parabolic Wave Equation:
An Ordinary-Differential-Equation Approach

0. Lee and J. S. Papadakis
J. Acoust. Soc. Am., 68, pp. 1482-1488 (1980)

Generalized Adams Methods for Solving Underwater Wave
Propagation Problems

D. Lee and S. Preiser
J. Comp. & Math. with Appls., 7(2), pp. 195-202 (1981)

Finite-Difference Solution to the Parabolic Wave Equation
D. Lee, G. Botseas, and J. S. Papadakis
J. Acoust. Soc. Am., 70(3), pp. 795-800 (1981)

VUGRAPH 10

(rigid) within the framework of the PE.

This bottom boundary treatment was incorporated into the 0DE and
finite difference models. At that time, we did not have a better
implementation of the ODE solution, but we concentrated our efforts on
developing a very basic, general purpose finite-difference scheme.19
could be implemented into computer c:ode.20

This scheme is known today as
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- method, which is unconditionally stable. The IFD model s used quite often
: to solve the standard PE.
Ll
-
$ We used the ODE model to solve a wedge problem consisting of range
versus propagation loss. The results turned out surprisingly well.
¥ o
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& Shallow-to-Deep Water Propagation Waedge Solution Comparison '::._l
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- After we showed that our bottom boundary treatment worked, we were asked AT
f T A
many questions pertaining to our IFD model's capabilities. One of the first ‘,:.»:':'\.‘_‘
. P N ot
3 practical questions was a problem proposed by H. P. Bucker. He asked: Your _:::‘{-::
b2, IFD model can handle bottom boundary conditions -- can it handle the PO
1 |
interface condition? O
o 0
‘f The problem did not seem to be a particularly difficult one, however, . _,';‘::‘,
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- at that time, no existing PE code could do it. VO
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Bucker Problem
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. VUGRAPH 12
'\- The problem was solved easily by the normal mode solution. The normal mode ¥
: solution was used as a reference solution for comparison of transmission '\-ﬁ
~
loss predictions.
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Hand1ing the interface wasn't difficult, but it required some thought as to
the best approach. Thanks to many valuable discussions with Dr. Suzanne T.

S A % N
SNl

'y

McDaniel, we worked out a finite-difference treatment for the horizontal ;‘.‘?‘-ﬁ

1nterface.2] The horizontal interface development is documented in the 278
article outlined in vugraph 14. b

K

NN

' ;\J'.':%j

A Finite-Difference Treatment of Interface Conditions for the S

Parabolic Wave Equation: The Horizontal Interface ;,:e__'_:.j

ANEA

S. T. McDaniel and Ding Lee : L

J. Acoust. Soc. Am., 71(4), pp. 855-858 (1982) ;-_.:,':Z:’_:Z:

: s e

A

-:::-:::-.‘_.

We then incorporated the horizontal interface conditions into the finite
difference code and ran the Bucker problem on the VAX 11/780 computer at

NUSC.
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As vugraph 15 shows, without the interface treatment, the results from both :.}:.':'_'f::
IFD and split-step do not agree with our normal mode reference solution '4".’
results, but after the finite-difference treatment, the results are in !’:;1—“
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Naturally, it is logtcal to extend the finite-difference technique to
handle the irregular interface comﬁtion.22 Or. McDaniel and 1 have worked
this out and I shall talk about this a l1ittle later.

Wniie the capabilities of ihe PE were being developed, use of the PE
model was increasing. Ouring this period of development, NORDA sponsored a
workshop, the “NORDA Parabolic Equation workshop.'za Many interesting,
realistic problems were introduced at the workshop and a comprehensive
report was published.

NORDA Parabolic Equation Workshop
James A. Davis, DeWayne White, and Raymond C. Cavanagh
NORDA TN-143 (1981)

VUGRAPH 16

One of the problems introduced was that of wide angle propagation.

Frequency = 230 Hz

Water depth = 100 m 1900 10 180 <ounp speed
Sound speed in water = 1500 Vs 4
Density in water = 1.0 g/cm

Density in bottom = 1.2 g/em
Attenyation in water = 0

Bottom attenuation = 0.5 dB

Bottom sound speed = 1890 Vs
Maximum range = 10 km 120
Source depth = 995 m

Receiver depth = 9.5 m

Number of Modes = 11 DEPTH

WATER
Pp= 10

T T T
{
[}
[]
4
\
i
[]
]
[}
1

Sound Speed Protile

VUGRAPH 17

This problem was solved satisfactorily by both the normal mode and the fast
fieid program (FFP). We then used the FFP solution as a benchmark reference
solution.
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— Fast fieid (FFP “Exact’)

~ - - Slandard PE

LOSS (dB)

e A - - LS Y - —- —— s e
50 55 60 65 70 78 80 as 90 95 100
RANGE (km)

Wide Angle Soiution Comparnson

VUGRAPH 18
Note, in vugraph 18, that the dashed-dotted line was the solution produced
by the standard PE (both the split-step and the IFD), the disagreement is
clear. It was due to the size of the angle of propagation. An important
capability required to produce agreement is the wide angle capability.

Let me briefly describe the mathematical development of the wide angle
capability. Recall the one-way outgoing wave equation, that is,

2
. : 2 1
(:_r”ko""‘o 1+ (n -1)’:2—2'>U=0.

)
° Z

where we made the approximation

2 2
2 la 11,.2 1la
A -1)+ 1+5l(n" - 1)+
* (o ) :g:zz 2[ ;5;;2]

to obtain the standard PE

u, = % ko(nz(r.z) - 1) u+ 2&; Upg-

. [2_+ ikg - ikg AF TN+ T E)“=°
One-way outgoing wave: % kg az?

1+(nz-1)+1__33=1+1[(n2—1)+1__31
Wz '2'[ k2 az?

=ik (nr2) - NHu + _j
ur .!,o(() ) .zl‘Guzz

VUGRAPH 19
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function approximation as follows:

2 1 32
JI—T( ’)'1)+77
"inz ko 3z =

€q. (12) becomes

\/1 * (nz(r.z) - 1)*

-
e
a2’

Il

John F. Claerbout.2d

determine p and q to suit our needs.

equation, that is,

1+ p[(nz(r.z) - 1) +

[
~N

—

1+ 0[(n2(r,z) - 1)*

1+ %[(nz(r.z) - 1) + —%

o~

[ 24
~N

2

»

k

o
@
N

J

Oerv-
04 ’Jv
r
[ VSRR | W

N

)

1+ }[(nz(r,z) - 1)¢ -}

)

which is the Wide Angle Wave Equation.

( 1+ p[(nz(r,z) - 1) + :]z'» -’-—2-
az
A ya -tk + ik 9
r ° 0 2 1 32
1+q (r,2) = 1) +
(o9 iz

L]
N

N

N

!

To be general, we approximate the square-root operator by a rational

If p=1/2 and ¢ = 0, we see clearly it reduces to the small angle
approximation, thus, resulting in the standard PE.

T0 7247

(12)

For a special selection, p = 3/4 and q = 1/4, the right-hand side of

(13)

which is the rational function approximation of the square-root operator by
We choose to keep p and q arbitrary so that we can

If we use Eq. (12) for the square-root operator and substitute it into
the one-way outgoing wave equation, we find a pseudopartial differential

2])u..

(14)
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A Rational Function Approximation
[N
LSRN
1+p (nqrz)-nq.l.i \"'\:’;\
122 ' K a2 S
J1*("z‘u)")*|%'a_zz= T v:_,:
- -2 I
1+4q [(nﬂ(r.z) 1) +k% azfj \'

192
s 1+ %N - ) + g 3
19 o
J1 +(nra) - 1) + '%5? =

1+ '/.[(nm.z)-tw ':-2-—:%;
Jon F. Claerbout approximation °
Wide Angle Wave Equati =
@ Angle Wave Equation rep [(I\’(r.z) e ‘klg _a%z; :E:-r‘“
£ =(-ik° + iko p_— )“ :.-:'_f:"
14+a|(Mra) - DY G5z ARE
’ R
VUGRAPH 20 .
:s"‘\j
N 00
We tend to refer to it as the Wide Angle PE, but in a sense this is ’,’:_:_,.::C
deceptive. The PE is our key equation. When p = 1/2 and q = 0, the standard f.:','{f,
&2

PE is a special case. Therefore, when we refer to the Wide Angle PE, we are

actually referring to the pseudopartial differential equation (14). :Cj;s
N
With the wide angle capability, you see that the IFD produced i“f;:i:-
agreeable resuits when compared with the benchmark FFP sol'ut1on. 7'.»\‘5-
—— Fast tield (FFP “Exact”) -:_.‘_'3:-:
- sof . oy
. - — - Standard PE :.;::,,;::.
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i There have been a number of authors who have contributed to the A
' A \]
, theoretical development of the wide angle capability. ;Ej‘,:
: - 425
N,
) . o ~if
' Fundamentals of Geophysical Data Processing with 4.""":
Applications to Petroleum Prospecting .
! Jon F. Claerbout j""‘
:’ McGraw-Hill (1976) T
» - — — * .":,‘-'.
: High Angle PE Sred
» Robert R. Greene CRLYA
- NORDA Parabolic Equation Workshop (1981) CA
: IFD: Wide Angle Capability CE:'-:EZ'
: George Botseas, Ding Lee, and Kenneth E. Gilbert AT
: NUSC TR#6905 (1983) AR
3 RS
\ Extension of the Parabolic Equation Model for High-Angle ot
. Bottom-interacting Paths A
“ o
: L. B. Dozier and C. W. Spofford JSSe
: SAIl Technical Report SAI-78-712-WA (1977) 3-}:‘
- . \"'-
i VUGRAPH 22 T
} r.,
! i
: Greene used the term “rational parabolic® as opposed to "parabolic." He also Pt
: applied the rational function approximation to the square-root operator. Ay
i This rational function approximate technique was applied earlier by """“'j
‘ Claerbout .23 NN
“ l.“’l.f\
‘ \::':::\
:1 A number of other people also examined and developed the wide angle ;‘,-;_;‘, _'.C
: capability. At NUSC, we incorporated this into our IFD code and a ;J..uf‘.
b comprehensive report was pubHshed.z‘ In the seismology field, Berkhout AN
- ESLANS
. used the continued fraction to approximate the square root oper'at.or'.28 :
v . -\ -
" .\:".-:.‘.
: RSN
d o?\'a
Wave Field Extrapolation Technique in Seismic =
) Migration L
Y ,‘P \q.\\.
: A. J. Berkhout NS
N 2N
. Geophysics, Vol. 48, #12, pp. 1838-1656 (1981) RSN
‘. Al -\*s
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It is interesting to note that Berkhout's first order continued fraction
coincides exactly with Tappert's standard small angle PE. His second order
continued fraction coincides with the Claerbout approximation. Roughly
speaking, the small angle PE can accommodate propagation angles up to 15°9,
and wide angle PE (IFD) can accommodate propagation angles up to 40°.
David Thomson??
handle the wide angle.

was the first to apply the Split-step algorithm to

A Wide Angle Split-Step Algorithm for the Parabolic
Equation

David J. Thomson and N. R. Chapman
J. Acoust. Soc. Am., 74(6), pp. 1848-1854 (1983)

VUGRAPH 24
Recently, one of my colleagues, Donald St. Hary3° of the University of
Massachusetts, developed a very high angle PE using a higher order rational
approximation that can accommodate a propagation angle greater than 45°.
This is good news in the area of shear wave propagation.

Formulation and Discretization of a Very Wide Angle
Parabolic Equation

Donald F. St. Mary and Ding Lee (1984)

VUGRAPH 25

A1l the authors I have mentioned thus far have made contributions to
the wide angle capability in this period of time. Two researchers, Estes and
Fain.31 started earlier examining the wide angle formulation using the
Taylor series expansion.
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Numerical Technique for Computing the Wide Angle
Acoustic Field in an Ocean with Range-Dependant
Velocity Profiles
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L. E. Estes and G. Fain
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J. Acoust. Soc. Am., 62(1), pp. 38-43 (1977)
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Continuous use of the PE for research and application purposes showed \4-
L 4
' reasonable success, however, under unusual environments, it was not fully ::;'{
' developed to handle everything. SACLANT and NORDA called our attention to e
i the fact that in the irregular sloping interface situation, if the depth .:I:‘\'
: partition points do not fall on the interface boundary, imaccuracy will -:::;-
. [ 0% e
. occur. In numerical analysis language, this is called numerical reflections. r:{::._
I; The present computer code cannot handle the situation without some :;'5:"
| modification because the irregular interface conditions treatment is not A :
X included in the present code. In addition to the progress made by McDaniel :j::jj::'
» and me, recent progress has been made by Jaeger'32 to treat the interface ".f'\-:;:;
. ' AL
' condition by using the irregular interface condition developed by McDanie) :::Q
l and me.
l: A Computer Program for Soiving the Parabolic Equation
} Using an Implicit Finite-Difference Solution Method
P Incorporating Exact Interface Conditions r:
‘ A
g Larry Ernest Jaeger :\::::
. .\.. g
: Naval Postgraduate School, MS Thesis (1983) .'.::;'.: Y
‘ A Finite-Difference Treatment of Interface Conditions for the b‘j_ .
) Parabolic Wave Equation: The Irreguiar interface E:r '
. -‘f )
. Ding Lee and S. T. McDaniel :(.E\'j;
, : RERCHAN
: J. Acoust. Soc. Am., 73(5), pp. 1441-1447 (1983) .:}’-:_'.;:
:- RN
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4
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Independently from the direct application of the irregular interface
condition, Jules deG Gribb1e33 made an important improvement on the finite
difference model.

Jules allows variable mesh spacing and deals with interfaces that do
not lie on a mesh point. He extended the finite difference treatment of
interfaces to the parabolic wave equation. Jules' main effort was centered
at the employment of variable vertical mesh size in conjunction with a high
level system of ODE solver.

Yy .

BRI
N

AR
Ve

Extending the Finite Difference Treatment of Interfaces
When Using the Parabolic Wave Equation

(% S 7 " THEEENIYY X N AS A YNy 5 5 4 F AL N ». % & -

Jules deGribbie

J. Acoust. Soc. Am., 76(1), pp. 217-221 (1984)

VUGRAPH 28

Up to this point, it seems that there is enough PE capability for research
studies as well as for applications. Three types of PE models exist.

EXISTING PARABOLIC EQUATION MODELS
1. Split-Step Fourier Algorithm Model
2. Implicit Finite-Difference Model
3. Ordinary-Differential-Equation Model

-
"
N

’y

0

YUGRAPH 29

Little has been done to compare the available computer models. The
only published 1iterature was given by Kew'ley34 who discussed practical
solutions of the PE model for underwater acoustic wave propagation.
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! Practical Solutions of the Parabolic Equation Model for
Underwater Acoustic Wave Propagation >
in Computational Techniques & Applications Conference :

D. J. Kewley, L. T. Sin Fai Lamn, and G. Gartrell PR,
ed. J. Noye, Sydrey . ::'- >

North-Holland, Amsterdam (1983) - -.j',
-

: VUGRAPH 30

Among these three models, IFD is the more general purpose. The 0DE
solution has great potential, but is not yet fully developed. Applications
of the PE model indicates that it is doing well as a research code,

. B especially the IFD code, because of its accurate computation of the wave

: field. However, a number of users are actually using these codes for

| applications. SR
: R
In solving either the small angle PE or the wide angle wave equation, _\\_}.S"
: we deal with one input parameter, the reference wavenumber ko. Application ;:f&:“
| of the above equations to solve real problems requires a clever selection of . '

: the reference wavenumber ko This selection was ignored by the model E::}::
:j developers and the users. For the user, in practice, he does not usually -"‘:\_-.t
r have the knowledge to select the best k°;~ therefore, users have, in most _‘_": ‘
. cases, ignored the selection of k . The model developer built in the R
; automatic selection of ko according to physical experiences. Inappropriate ::_.::::
j k ° will lead to an evident phase error. Pierce recently reemphasized the :E:\:::::
¢ importance of k  selection and introduced a formula to determine the range NN
‘ of k, based on the Rayleigh quotient. Some numerical experiments have been W

) carried out at the Naval Underwater Systems Center, New London Laboratory; _i,‘ -
results show some phase shift effects dependent on ko variations. Tappert \-:;"
‘,: and Lee joined Pierce in studying the natural selection of ko' \'.:';E
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a9 The Natural Reference Wavenumber for Parabolic
.a;: Approximations in Ocean Acoustics
<
(;’ Allan D. Pierce
l
. J. Comp. & Math. with Appis. (To be published) (1984)
o VUGRAPH 31
W
o 36
3 It is interesting to note that L. Ngheim-Phu and Tappert”" develaped
a PE box that can be put on shipboard for fast prediction. N
(AR
{: (SRS
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.. - " °
- A High-speed.Compact, and Interactive Parabolic Equation Ao
o SOlution GENerator System (PESOGEN) S
o Lan Ngheim-Phu and F. D. Tappert A
hY RO
1 J. Acoust. Soc. Am., 75(S1), p.s26 (1984) = 13
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- RN
- The interest in the PE solution has continuously increased. An j;
- . N e L
:'c interesting development was the Yale University Workshop.3' Three days :ﬁ::‘_,':_:
s were devoted to discussions by invited speakers about the state-of-the-art ‘_-';"'?
of computational ocean acoustics. v.;;qi-
2 N
x . DAY
', * 'fx';\';
‘.- o
:- COMPUTATIONAL OCEAN ACOUSTICS WORKSHOP ;‘:i::
YALE UNIVERSITY N
. SN A
v Sponsors: ONR (Math. Dept.) ’:.,\‘
3 Yaie U. (Computer Science Dept.) - ,
N NUSC (Independent Research)
“n
Special I1ssue: J. Comp. & Math. with Applications
-_— Book: Pergamon Press
. Editors: Martin H. Schuitz and Ding Lee
‘-:
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Besides the book published by the Pergamon Press, there was a technical b
document outlining the progress in the development and application of the PE. Q.r:.‘-j'

Recent Progress in the Development and Application of the -.jf(- AL
Parabolic Equation ’ e

Ed. Paul D. Scully-Power and Ding Lee e
7.
NUSC TD7145 (1984) '
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Most contributions we have mentioned so far deal with the solution of
1inear PE. McDonald and I(uper'man:’a developed a two-dimensional (range and
depth) formula for the propagation of nonlinear acoustic pulses and weak
sﬁocks in a refracting medium. The equation they developed is the nonlinear
time domain counterpart of the linear frequency domain PE.
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Time Domain Solution of the Parabolic Equation Including
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Nonlinearity, E. B. McDonald and W. A. Kuperman, To appear LA
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in J. Comp. & Math. with Appls. (1985) AR
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This technical document” contains some of the interesting topics Tappert
and [ discussed over a period of two summers. These include
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® Range Refraction Corrected PE.(ret 40) st
- ® Density Effects in PE.(ref 39) LN,
o ® Time Domain PE. :-;?1
s ® High Frequency PE (hybrid ray-PE). (ref 39) . b
7 ® Backscattering (in range) PE.(ref 41) h oY
59 ® Rough Boundaries in PE.(ref 42) Jals
7 ® 3-Dimensional PDE.(ref 43) '.;!'i!
‘ ® Stable Explicit Schemes for Soiving 3-Dimensional _
e (2-Dimensional) PE i
o ® Shear Waves in PE. RPN
N ® Match Interface Conditions Between Fiuid and Elastic . ) T
td Media. ,"J‘\:
. ® Large Angle PE. DN
\ ® Currents in PE. .
= @ Doppler Effects in PE. o
® Moving Sources and Receivers, or Time-Variables. VN
g ® The Application ot Multi-Array Processors to Soive the PN
X Parabolic Wave Equation Jata
-_: ® Reciprocity in the Iime Domain and the PE Method. :}}:-:
3 ; | RO
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-_:- As for the computation of long range propagation, it is on a very .‘Qﬁ
' large scale. ldeally, we would 1ike to have in principle R
; R
. *.':\';\
: RS
N LARGE SCALE COMPUTATIONS 0
1. Accuracy Evrv:
e
o, 2. Speed N
> * : N )‘-:.:
j 3. Minimal computer storage requirements J-::_
- - qﬁ 1
4 L
o
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Sl
i Let me use the IFD as a simple example. Using the IFD to solve the parabolic :'xk
. 2
: wave equation, either small angle or wide angle, requires the solution of a T, |
7 system of equations of the form »$
%
L
: 5%
X AulN+1 = Byn + yh 4+ yn+1 .:g
3 :" a
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) Since both matrices A and B are tridiagonal, a special recursive formula is ..::g
L)%
. applied to solve the system at minimal cost. Not counting the overhead, the :'ﬁ\’,
a ) tridiagonal solver requires 6N operations. The solution looks so simple and e
|/
LW economical that it does not seem to require intensive computations even for
long range propagation problems. However, this is not generally true. Let us
j: recall our earlier solution to the wedge problem of a rigid bottom boundary Ry
L condition. Our early solution to this problem was applying the Generalized e
= Adams ODE method, which produced the accurate solution. ’ :':'::
':' 20 \'-/"-'
y -': STARTING FELD % ..(::j
,\. - « 50 degrees '\J_"-
o g o - 27 4 maters ol
e g s
) 5 60 N .
v é 1ok :’-‘ﬁ-‘
094 E '-.'.":
~: 80 , ..'.
X o I b
::J ooa 2 E] 4- ”‘d':e } .‘:‘ y [] 9 19 : '-:f:
v
F Shatlow-to-Deep Water Propagation Wedge Solution Comparison bt
.\: . :.’:
¥ o
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For the sloping bottom boundary, in order to solve the system ~
-:: satisfactorily, we adopted a variable dimension procedure. We started at ;I-E::f
-:: approximately 348 m for a 0.15 m depth increment and ended up to solve an e
-;j initial system of equations of order 400.. Due to the memory storage limit, ::;:?:j
Y -
- calculations were not allowed to go up to a maximum range of 10 km, which J .
N . means we have to solve a system of equations of order 5740. Recently, we "1"
- improved the technique and relaxed the storage requirement, thus, increased -:{':-
; -.' --\-n‘
o the speed. AW
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The parabolic wave equation can be solved by a first order Generalized
Adams method.*?

PE ur = a(ko,r,2u + b(kg,r,2)uzz
ODE ur=A(ko,r,2u + g(ko,r.2,ug)
GAB uMm+ 1= gAhyn 1 h(Ah) — 1(eAh - I)g,,
EXP eAh=(] - Ah)—1

Improved
GAB (t=Ahun+1=yn+hgn

VUGRAPH 40

Since Matrix A increases dimension at every range step, eAh has to be
updated at every range increment. It costs N3 operations for the inversion
and cost N2 memory storages because we calculate the matrix exponential by
the rational Pade approximation, which requires the inversion of an NxN
matrix. Even though the Matrix A is tridiagonal, the inverse destroys the
tridiagonal property and fi1ls up the storage. You can see the cost. By a
careful study, for a reasonable choice of the step size, we can calculate
the new wave field by avoiding this expensive matrix exponential calculation
and solving a system of equations.

This system is again tridiagonal, we reduce N3 operations to 6N

operations; moreover, we reduce a Nz memory storage requirement to only 3N
storages. By coincidence, this problem can also be solved nicely by the IFD.
Now, one can again, by taking advantage of using hardware, improve the
efficiency of the computation. You shall hear this from other talks.
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CONCLUSIONS
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Now you have heard of the many important contributions toward the
application of PE approximation in solving ocean acoustic problems and have
also heard of some interesting PE developments. You may note that there are
many not yet well-developed PE approximations, many more than existing PE
capabilities. However, I would Vike to call your attention to the fact that
NOT every problem can be solved by the PE approximation in an efficient
manner. If the physical conditions fall within the limitation of the PE
approximation, PE approximation is an efficient method to apply.

h Y

o Y g ¥ 5 s
[
v

‘o
SN
SN

f.s'
B

3 e
st
o -.\'
o LN

L)
LR 2 R

‘-. ... LYh _"

h
o

AR
° ..' .l.."n N

Foa’s

LY 4
]

X4
Y,
v .‘I
t s A
AATAY |

AR b .
&4 Yy Y

& 0788
]

-

NOT every problem can be solved by

l' ~l. l.

the Parabolic Equation Approximation
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I welcome your comments and participation in solving these problems and
‘ applying your solutions to realistic problems.

“ Thank you.
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